
2/19/2024 1

Leveraging Open-Source Frameworks
in Commercial FPGA Development

A Case Study with SpinalHDL

Krzysztof Czyż, PhD

CTO @ embevity
krzysztof.czyz@embevity.com

Mateusz Maciąg

architect @ embevity
mateusz.maciag@embevity.com

2/19/2024 2

What’s in it for you?

• How to improve FPGA design services?

• SpinalHDL - a tool enabling speed-up of gateware
development.

• Vex/NaxRISCV - a highly configurable soft core.

• Cons and pros of using SpinalHDL in commercial
projects.

2/19/2024 3

Embevity, what we do?

Design, prototyping and testing
(hardware, firmware, gateware)

ProductOriginal idea

2/19/2024 4

Design, prototyping and testing
(hardware, firmware, gateware)

ProductOriginal idea

find the right tools

How to improve our services – find the right tools

How to solve
the problem of

improving service?

2/19/2024 5

The first contact with SpinalHDL

SLVS FPGA CSI

The SLVS-to-CSI brigde

How fast could you implement it?

2/19/2024 6

SpinalHDL

▪ high-level hardware description language

▪ hosted on the top of Scala

▪ focus on RTL description

▪ interoperable with existing tools
it generates VHDL/Verilog files (as an output netlist)
it can integrate VHDL/Verilog IP as blackbox

▪ open source, started in December 2014
by Charles Papon

2/19/2024 7

SpinalHDL – basic concepts

Registers and state machines

† simplified graphical representation of
generated VHDL and/or Verilog code

val isUnlocked = Reg(Bool) init True

val cmd: State = new State {
whenIsActive {

when(spiDev.io.rx.valid) {
when(

// 0xAC - lock bootloader
spiDev.io.rx.payload === B"10101100"

) {
isUnlocked := False
goto(trap)

}.elsewhen(...) {
...

}.otherwise(goto(trap))
}

}
}

2/19/2024 8

SpinalHDL – basic concepts

Flows and streams

val io = new Bundle() {
val userRx = master Flow (Bits(spiWordBits))
val userTx = slave Stream (Bits(spiWordBits))

}

io.userRx.setIdle()
val user: State = new State {
whenIsActive {
when(spiDev.io.rx.valid) {
io.userRx << spiDev.io.rx

}
}

}
...

...
io.userTx
.throwWhen(spiTxDiscarding)
.continueWhen(fsm.isActive(fsm.user)) >>

spiDev.io.tx
spiDev.io.txBusEnable := spiMisoAllowed
...

2/19/2024 9

The redesign of the optical interrogator

2/19/2024 10

Situation overview:

• FPGAs used so far for data
transfer only (< 5% usage)

• all computation overhead lies on
the central unit

• hundreds of units manufactured

• client decision: offload expensive
computations to FPGAs on the
cards

The redesign of the optical interrogator

2/19/2024 11

The redesign of the optical interrogator – constraints

Signal processing algorithm, due to its
nature, requires a soft-core CPU

Due to very limited resources, highly-
configurable, ready for fine-tuning
implementation is needed

Chosen solution
VexRiscv – SpinalHDL implementation of
the RISC-V architecture.

2/19/2024 12

VexRiscV / NaxRiscV- the frosting on the SpinalHDL cake

• RV32IM*A*F*D*C* instruction set, pipeline from 2 to 5+ stages
• "Plugin" based design:

• Interface agnostic (AXI4, Avalon, Wishbone)
• Tested with Linux, Zephyr OS, FreeRTOS

2/19/2024 13

Custom CPU construction

The entire CPU configuration is done in
a single place

Each plugin provides many options to
finely tune the implementation

Examples:
• Set non-cacheable address range

• Instruction decoding details

• ALU implementation details

• Use full barrel shift vs. simple

2/19/2024 14

Custom bus configuration

• Bus pipelining fine-tuning
(scary Scala operators)

• Peripheral attachment

• Bus connections

2/19/2024 15

Custom plugins

Problem: custom booting scheme
requires telling the CPU to not
execute any code until the firmware
is loaded.

Solution:
BootHoldOnPlugin

2/19/2024 16

Simulation capabilities

Need to simulate gateware and
firmware…

… just launch Verilator simulation and
connect to your RiscV core with
OpenOCD and GDB.

2/19/2024 17

Drawbacks

• Documentation: needs much more use case examples, can't avoid
looking into library implementation (there is a Workshop GitHub
repository though).

• The SpinalHDL engine is mature and quite robust, but library
components may experience serious problems (found a buggy SPI slave
peripheral).

• Conventions above the syntax – Scala freedom to create and overload
literally any operator makes understanding the code a bit harder.

• Some of the high-level abstractions make learning curve a bit steeper.

2/19/2024 18

Advantages

• Efficient way of describing hardware: no need to deal with
implementation details. Time-boost you gain could be impressive.

• There is no logic overhead in the generated code.

• SpinalHDL is interoperable with VHDL and Verilog.

• Simulation using Verilator enables simulation not only your design,
but also testing of firmware running in simulated design.

• Large SpinalHDL standard library.

• Open-source tool with licensing scheme enabling usage in commercial
applications.

• Responsiveness of SpinalHDL’s creator, Charles Papon.

2/19/2024 19

contact@embevity.com
www.embevity.com

Thank you !

	Slide 1: Leveraging Open-Source Frameworks in Commercial FPGA Development A Case Study with SpinalHDL
	Slide 2: What’s in it for you?
	Slide 3: Embevity, what we do?
	Slide 4: How to improve our services – find the right tools
	Slide 5: The first contact with SpinalHDL
	Slide 6: SpinalHDL
	Slide 7: SpinalHDL – basic concepts
	Slide 8: SpinalHDL – basic concepts
	Slide 9: The redesign of the optical interrogator
	Slide 10: The redesign of the optical interrogator
	Slide 11: The redesign of the optical interrogator – constraints
	Slide 12: VexRiscV / NaxRiscV- the frosting on the SpinalHDL cake
	Slide 13: Custom CPU construction
	Slide 14: Custom bus configuration
	Slide 15: Custom plugins
	Slide 16: Simulation capabilities
	Slide 17: Drawbacks
	Slide 18: Advantages
	Slide 19

