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What’s in it for you?

• How to improve FPGA design services?

• SpinalHDL - a tool enabling speed-up of gateware 
development.

• Vex/NaxRISCV - a highly configurable soft core.

• Cons and pros of using SpinalHDL in commercial 
projects.
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Embevity, what we do?

Design, prototyping and testing
(hardware, firmware, gateware)

ProductOriginal idea
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Design, prototyping and testing
(hardware, firmware, gateware)

ProductOriginal idea

find the right tools

How to improve our services – find the right tools

How to solve 
the problem of 

improving service?
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The first contact with SpinalHDL

SLVS FPGA CSI

The SLVS-to-CSI brigde

How fast could you implement it?
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SpinalHDL

▪ high-level hardware description language

▪ hosted on the top of Scala

▪ focus on RTL description

▪ interoperable with existing tools
it generates VHDL/Verilog files (as an output netlist)
it can integrate VHDL/Verilog IP as blackbox

▪ open source, started in December 2014
by Charles Papon
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SpinalHDL – basic concepts

Registers and state machines

† simplified graphical representation of 
generated VHDL and/or Verilog code

val isUnlocked = Reg(Bool) init True

val cmd: State = new State {
whenIsActive {

when(spiDev.io.rx.valid) {
when(

// 0xAC - lock bootloader
spiDev.io.rx.payload === B"10101100"

) {
isUnlocked := False
goto(trap)

}.elsewhen(...) {
...

}.otherwise(goto(trap))
}

}
}
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SpinalHDL – basic concepts

Flows and streams

val io = new Bundle() {
val userRx = master Flow (Bits(spiWordBits))
val userTx = slave Stream (Bits(spiWordBits))

}

io.userRx.setIdle()
val user: State = new State {
whenIsActive {
when(spiDev.io.rx.valid) {
io.userRx << spiDev.io.rx

}
}

}
...

...
io.userTx
.throwWhen(spiTxDiscarding)
.continueWhen(fsm.isActive(fsm.user)) >>

spiDev.io.tx
spiDev.io.txBusEnable := spiMisoAllowed
...
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The redesign of the optical interrogator



2/19/2024 10

Situation overview:

• FPGAs used so far for data 
transfer only (< 5% usage)

• all computation overhead lies on 
the central unit

• hundreds of units manufactured

• client decision: offload expensive
computations to FPGAs on the 
cards

The redesign of the optical interrogator
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The redesign of the optical interrogator – constraints

Signal processing algorithm, due to its
nature, requires a soft-core CPU

Due to very limited resources, highly-
configurable, ready for fine-tuning
implementation is needed

Chosen solution
VexRiscv – SpinalHDL implementation of 
the RISC-V architecture.
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VexRiscV / NaxRiscV- the frosting on the SpinalHDL cake

• RV32IM*A*F*D*C* instruction set, pipeline from 2 to 5+ stages
• "Plugin" based design:

• Interface agnostic (AXI4, Avalon, Wishbone)
• Tested with Linux, Zephyr OS, FreeRTOS
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Custom CPU construction

The entire CPU configuration is done in 
a single place

Each plugin provides many options to 
finely tune the implementation

Examples:
• Set non-cacheable address range

• Instruction decoding details

• ALU implementation details

• Use full barrel shift vs. simple
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Custom bus configuration

• Bus pipelining fine-tuning
(scary Scala operators)

• Peripheral attachment

• Bus connections
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Custom plugins

Problem: custom booting scheme
requires telling the CPU to not 
execute any code until the firmware 
is loaded.

Solution:
BootHoldOnPlugin
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Simulation capabilities

Need to simulate gateware and 
firmware…

… just launch Verilator simulation and 
connect to your RiscV core with 
OpenOCD and GDB.
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Drawbacks

• Documentation: needs much more use case examples, can't avoid
looking into library implementation (there is a Workshop GitHub 
repository though).

• The SpinalHDL engine is mature and quite robust, but library
components may experience serious problems (found a buggy SPI slave
peripheral).

• Conventions above the syntax – Scala freedom to create and overload
literally any operator makes understanding the code a bit harder.

• Some of the high-level abstractions make learning curve a bit steeper.
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Advantages

• Efficient way of describing hardware: no need to deal with 
implementation details. Time-boost you gain could be impressive.

• There is no logic overhead in the generated code.

• SpinalHDL is interoperable with VHDL and Verilog.

• Simulation using Verilator enables simulation not only your design, 
but also testing of firmware running in simulated design.

• Large SpinalHDL standard library.

• Open-source tool with licensing scheme enabling usage in commercial
applications.

• Responsiveness of SpinalHDL’s creator, Charles Papon.
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contact@embevity.com
www.embevity.com

Thank you !
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